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The effects of surface topography on momentum 
and mass transfer in a turbulent boundary layer 

By R. A. DAWKINST A N D  D. R. DAVIES 
Department of Mathematics, University of Exeter, U.K. 

(Received 19 March 1980 and in revised form 10 November 1980) 

An approximate, conveniently applied theory with corresponding experimental data 
is firesented concerning the changes in momentum and mass transfer produced by a 
ridge of small slopes in a flat-surface quasi-stationary turbulent boundary layer. A 
first-order mean velocity perturbation solution is found to be in good agreement with 
measured velocities on the up-slope side of a two-dimensional ridge, of length 20 cm 
and height 1 cm, fixed on the floor of the working section of an open-circuit wind 
tunnel. A vapour-transfer eddy-diffusivity distribution is then calculated for the inner 
boundary-layer region and solutions of the consequent vapour-transfer equation give 
the variation of rate of evaporation from surfaces of varying lengths placed at  different 
positions on the up-slope region of the ridge. Corresponding measurements are found 
to be in good agreement with the theoretical calculations, and show that, even over 
small slopes (of 1 in lo), the evaporation rate varied with position by 25% from 
maximum to minimum. This method of calculation is extended to  examine the effect 
of surface curvature on diffusion of gas from an upstream line source in a turbulent 
boundary layer over the ridge; experimental and theoretical concentration profiles 
compare extremely well over the leading slope. 

1. Introduction 
Solutions have recently been constructed, e.g. Jackson & Hunt (1975), to give the 

mean velocity distribution in the flow of a turbulent boundary layer over a low hill. 
They were designed to apply primarily in a meteorological context. They are not 
specifically concerned with, for example, the problem of evaporation in wind-tunnel 
conditions, in which the transfer of vapour depends crucially on the structure of 
turbulence in an inner layer very close to the surface. Consequently an alternative 
mathematically convenient form of approximate analysis is developed which can be 
used to construct spatial distributions of eddy viscosity and vapour eddy diffusivity. 

The essential controlling parameter is the downstream pressure gradient induced by 
the curvature of the boundary surface. It is difficult to evaluate in a turbulent boundary 
layer for a given shape of surface. However, it has been rigorously shown by Sykes 
( 1980) that the leading-order velocity perturbations are associated with the appro- 
priate inviscid, irrotational potential-flow solutions and consequently the large 
leading-order pressure perturbations are given by these solutions. This is the basic 
assumption made in this paper, and the consequences are tested in wind-tunnel 
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conditions. A mean (logarithmic) velocity profile, changing very slowly with down- 
stream distance, is perturbed by a two-dimensional ridge of small slopes fixed on the 
floor of the working section of a wind tunnel. The particular curved-ridge surface 
studied is then identified with a streamline of an equivalent inviscid potential flow 
past a circular cylinder, noting that it can be generalized by considering other cylin- 
drical surfaces; Bernoulli’s theorem then gives an expression for the downstream 
variation of pressure gradient, which is inserted into the equation of mean turbulent 
flow. By using the premise that the structure of turbulence near the ridge surface is 
similar to that in classical flat-plate flow and that the downstream pressure gradient 
is an order of magnitude greater than the variation of turbulent shearing stress induced 
by the small slope, the first-order perturbation induced by the curvature in the 
logarithmic mean velocity profile can be evaluated. These results are then tested by 
comparing computed mean velocity profiles at various positions on the ridge with 
measured values. The measured profiles demonstrate the complex effect of curvature 
and are valuable in themselves, as measurements of this type have not previously 
been obtained in detail (as indicated by Jackson & Hunt 1975). They were found to 
be in excellent agreement with the theoretical profiles except for a region very close 
to the surface on the lee side of the brow of the ridge. 

The distribution of eddy viscosity was then evaluated for the limited downstream 
ridge lengths considered. The eddy-diffusivity distribution in the inner layer adjacent 
to these limited areas of ridge surface follows by applying Reynolds analogy, and a 
convenient method of calculating evaporation (Davies & Bourne 1956) can be used. 
This is valid for cases in which the thickness of the momentum boundary layer varies 
significantly in the downstream direction, and contains a vapour boundary layer whose 
thickness also varies in this direction. The method of calculation is then verified by 
carrying out a series of experiments employing the gravimetric method of measuring 
evaporation from surfaces of aniline of different lengths placed on different locations 
on the upslope ridge surface, and the effect of curvature on evaporation estimated. 

Finally, a method is described of predicting concentration profiles over a ridge when 
a line source of gas is placed upstream, in wind-tunnel conditions: this process does not 
appear to have been previously studied in detail. The two-dimensionality of the prob- 
lem restricts its applicability, but the results indicate the considerable changes in gas 
concentration caused by a curved surface on a turbulent boundary layer. The eddy- 
diffusivity distribution in the inner layer, used to calculate evaporation, does not give 
good results for concentration profiles, and an expression for eddy diffusivity, applied 
by Davies & Bourne (1956) over the main thickness of the boundary layer, is modified 
by assuming an approximate similarity in shape of the velocity profiles over the limited 
range of the leading slope of the ridge. A solution of the two-dimensional equation is 
obtained, and experiments on gas concentration distributions over a ridge surface in a 
wind tunnel are used to test the method of calculation. 

2. Distribution of velocity profiles over a ridge surface 
(a)  Theoretical analysis 

In  order to derive a suitable expression for the pressure distribution created by the 
motion of air over the ridge, two-dimensional inviscid incompressible flow theory is 
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used. An application of this to the flow around a circular cylinder, radius a, inserted 
into a uniform stream U, moving along a negative X axis, leads to a stream function 
in the form 

and a pressure distribution, given by 

p ( X ,  Y )  = #pU,2[2a2(X2- Y 2 ) - a 4 ] / ( X 2 +  Y2)2 ,  ( 2 )  

where p denotes air density and ( X ,  Y )  refer to  positions parallel to  and perpendicular 
t o  U, , relative t o  the centre of the cylinder. An expression for the pressure variation 
along a given streamline, $ = $, (constant), is next required and substituted into the 
classical (logarithmic) mean velocity profile of a flat-plate turbulent boundary layer, 
with the assumption that p ( X )  is a function of downstream distance only, in the 
boundary layer. I n  this way an estimate is made of the modification created in the 
flat-plate profile by a small downstream curvature. Substitution of ( 1 )  into ( 2 )  leads, 
however, t o  a complex expression forp(X) and a streamline form for a curved boundary 
surface which would be difficult to cut for wind-tunnel experimentation. 

As an initial test of the complex effect of surface curvature, the limiting case is 
considered of small slope expressed by taking the parameter (aU,/$,) to  be small and 
expanding in powers of this parameter. This leads to the downstream pressure dis- 
tribution 

p ( X ) / W i  = (2 (auo /$o)2 [ ( (X /L)2 -  1 )  ( ( x / L l 2 +  112- 2(aUo/$o)2 ( ( X / L ) 2 +  1) 

- (au0/$o)41 - (aU0/$J4 ( ( X / 0 2 +  1l21 ( 1  + ( X / L ) 2 ) 2  
x [ (I  + ( X / W 3  + 2(aUo/$o)2(1 + ( X / L ) 2 )  + (au0/$o)41-2 (3) 

by neglecting higher-order terms in (aU,/$,); $,/U, = L is a convenient length scale. 
The associated shape of surface 

y / L  = 1 + (aUo/$o)2 [1 + ( X / L ) 2 ] - 1  (4) 

is a convenient section for wind-tunnel preparation. 
We now consider a fully developed turbulent boundary layer on the flat lower 

surface of a wind tunnel, sufficiently far downstream of the virtual origin of the 
turbulent boundary layer to  be considered independent of downstream distance over 
the extent of the ridge. From wind-tunnel experiments in this region, we findit possible 
to represent very closely a simplification to  the logarithmic profile in the form 

U = AyP, (5) 

y being measured along a normal from the tunnel surface. Values of A and p and the 
experimental profiles are shown in figure 1 using the experimental technique described 
in § 2 ( b ) .  

A ridge of small slope is now inserted and the consequent change in velocity dis- 
tribution found when the pressure distribution (3) is inserted into the flat-plate 
boundary-layer profile, represented by (5). The two-dimensional equation of mean 
motion to  be solved is then 
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x being downstream distance from virtual origin of the boundary layer, and u and v 
are mean velocities, e is the eddy viscosity, and Reynolds stress 7 is taken to be related 
to  E by the gradient relationship r / p  = 6 aulay. 

We now assume that the dominant term on the right-hand side of (6) is aplax; this 
is consistent with the result obtained by the rigorous analysis of Sykes (1980)  and our 
basic premise that the structure of turbulence is similar in flat-plate and small-ridge 
flow. It is also justified by the very close agreement found between experimental and 
theoretical profiles. We then write u = ii + ti, v = 8, where ti and 8 are the small 
modifications produced by the presence of the ridge. Neglecting second-order small 
terms, equation (6) becomes 

( 7 )  

which after substitution of (5) and use of the continuity equation leads to  the solution 

where oo is the perturbed profile a t  x = xl, p (x l )  is the dynamic pressure a t  any specific 
value of x = x1 due to the ridge and c,, is an arbitrary constant. To be consistent with 
two-dimensional potential-flow theory, we assume 6 is symmetric about the highest 
point of the ridge and so co = 0. As y -+ 0 a different form of analysis is required and is 
found by matching 6 values to the classical empirical logarithmic formulae for mean 
velocity in a turbulent boundary layer near a flat surface. 

( b )  Experimental method and results 

The wind tunnel used is housed in a very large laboratory with a high ceiling in the 
Applied Science Building at  Exeter University. It is a traditional open-circuit, low- 
speed system, designed by Dr F. M. Burrows (University College of North Wales, 
Bangor) and is well tested by Applied Science staff a t  Exeter: its overall length is 
10.5 m, the working section being 1.5 m long, 0.9 m wide, and 0.5 m high. The floor 
of the working section is in four removable sections. The maximum possible speed of 
air in the working section is approximately 40 m s-1 but the maximum speed used was 
20 m s-l to avoid any effect of wall vibration on the turbulent boundary overlying the 
flat working-section surface; mean velocity profiles were measured for flow speeds of 
1540,1870, 2150 cm s-l. These velocity measurements were made along the centre- 
line of the section using a standard Pitot-tube system; atmospheric pressure and tem- 
perature were also measured in order to correlate the results. Vertical distances could 
be measured a t  intervals of 0.01 mm, but measurements a t  intervals of 0.5 mm were 
sufficient to define the profiles; however, due to the magnitude of the outer diameter 
of the available Pitot tube the nearest reading to  the surface was a t  0.8 mm. 

Measurements of velocity profiles were first taken over two of the floor sections to 
check (a)  that the virtual origin of the turbulent boundary layer (obtained by plotting 
the heights of points a t  which u/Uo = 0.99) was well upstream of the particular floor 
section used in the experiments, and ( b )  that (before insertion of a ridge) the thickness 
of the layer did not change appreciably with downstream distance over the range, 
20 cm, of the ridge position. A rectangular inset of0.6 cm deep, 30 cm wide, and 20 cm 
long was then cut into this section. The two-dimensional ridge was made out of Perspex 
1.6 cm high, 30 em wide, and 20 cm long, and fitted into the inset. 
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FIGURE 2. - , cross-section of ridge surface; 0, sampling positions 1 to 7.  

The ridge was manufactured by a numerically controlled milling and drilling ma- 
chine, programmable with the aid of a punched paper tape; full details of this and 
related processes are given by R. A. Dawkins (1979). Suitable holes were drilled along 
the centre-line of the ridge at  positions shown in figure 2, and brass tubes were fixed 
underneath these, along which the Pitot tube could be traversed vertically; before 
using a particular sampling position the other holes were suitably covered. 

The surface of the ridge was cut to the shape shown in figure 2 ,  and given by 

y/10 = 0.2/[(8/10)2- 2(Z/lO) + 21, (9) 

obtained from equation (4) by taking L = 10 em, (aUo/$o)2 = 0.2, and 8 is now the 
downstream distance from the leading edge of the ridge. The effect of neglecting 
terms of order (aU0/$,)4 is found to be small for these numerical values of L and 
(aU,/$,); the error in the expression forp(X), equation (3), is found to be only of order 
3 %, with a similar small error in (9). It is not, of course, possible in practice to arrange 
a ridge of infinite extent on the floor of the working section; consequently the length 
of the ridge actually tested was terminated at  5 = 0 and 2 L  in the new co-ordinate, 
and the measured velocity profile a t  position 1 (figure 2 )  taken as an initial upstream 
condition. 

Substitution of (aUo/$,)2 = 0.2 in equation (3) gives the variation of p ( x / L )  with 
x / L ;  it is shown in figure 3. The theoretical modification to mean downstream 
velocity (equation (8)) is of the form 

where g(y) is the form c, y-p which would be zero if the whole infinite ridge was inserted 
into the flow. However, since the ridge is terminated by practical wind-tunnel condi- 
tions, it is necessary to determine a value for c1 from a measured profile at  one specific 
downstream position: this was taken at  the leading edge of the ridge, at position 1 
(marked in figure 2), for each value of U, used. Taking this as a necessary initial 
condition due to practical limitations, it is, of course, nevertheless a good test of 
theory to compare measured and calculated (G + a) values at  the downstream sampling 
points numbered 2-7. The values of the constant c1 were found to be - 128, - 155, 
- 179 for U, = 1540, 1870, 2150 respectively (all in units of cm s-l). 
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FIGURE 3. Calculated pressure distribution over the ridge (given by equation 9). 

Figures 4(a)-4(g) give u = Z+a a t  positions 1-7, and show that the calculated 
theoretical profiles are in good agreement with measured ones, except in the region 
between 1 and 4 mm for positions 5 and 6 on the lee side of the ridge. I n  this region the 
pressure gradient term is reduced; the discrepancy between the results of approximate 
theory and experiment suggests that a higher-order theory is needed, involving a 
contribution from Reynolds stresses. The velocity profile a t  position 4 (figure 4 d )  
shows clearly the sharp increase in velocity (about 30 yo) due to the effect of curvature 
on the pressure gradient distribution, and suggests that the local evaporation from a 
wet surface (or heat from a heated surface) and consequent diffusion in the region of 
flow above, is also sensitive to curvature. These experimental profiles may also fill. a 
need (as indicated in 3 1 )  to have available good velocity profile data for flow over a 
ridge in wind-tunnel conditions. 

It was not possible to measure velocity profiles in a region of less than 1 mm from 
the surface but, as this is the region which strongly influences vapour (or heat) transfer 
from the surface, i t  is necessary t o  make an estimate of the mean velocity distribution 
in this inner layer. The theoretical velocity values (U + a) close to  the surface (these fit 
observed values closely) are matched to those given by the classical flat-plate empirical 
equation (e.g. see Howarth 1953, p. 824), 

u/U, = 5.5+2.5 In y, for yT > 30, ( 1 1 )  

where y, = U, ylv, v is the kinematic viscosity and U, is the ‘friction velocity’, whose 
values are thus determined. The structure of turbulence very near the slightly curved 
surface is then assumed to  be similar to  that near a flat-plate surface. Figures 5 (a) ,  ( b )  
show the approximate fit for stations 1-4 a t  U, = 2 150 cm s-l. The resulting calculated 
downstream variation of U, on the upslope side of the ridge is shown in figure 6 (a).  This 
is a linear relationship of the form U, = a(?i +/I), where CL = 3.10 and /I = 23.97 cm at  
U, = 2150 cm s-1, and % is in cm measured from the leading edge of the ridge. 

These values can now be used to construct a convenient approximate mathematical 
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FIGURE 6. (a) Estimated downstream (5) variation of friction velocity, u,, over the ridge. (i3) 
Estima.ted downstream variation of velocity at height of 1 mm over the ridge surface. 5 is 
measured from leading edge of ridge. 

description of the mean flow distribution in the region very close to the surface, which 
controls evaporation. The lowest height at  which velocity can be measured by the 
available apparatus is 0-1 cm. The variation of this velocity, u ~ . ~ ,  is shown in figure 
6 (b) : it is found by fitting a line of regression to this data. A good representation is 
foundintheformu,., = by',where[= it+,8.ForU0= 2150cms-l,b = 1 0 . 6 1 , ~  = 1.35: 
for U, = 1870 cm s-l, b = 13.39, r = 1.33: for U, = 2150 cm s-l, b = 17.41, r = 1.31: 
[in cm. In  the direction normal to the surface a power-law variation is used, since this 
has been seen to lead to a good representation from 2 to 30 mm from the surface and 
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it is also required to apply available evaporation theory in a developing turbulent 
boundary layer. So the form 

is used as a convenient approximate description of the mean flow field in the region 
over the leading slope in the inner layer, close to the ridge surface. The value of 
q = 0.15 was found to give a good fit to the logarithmic empirical form and also to the 
measured data for heights up to 30 mm. 

u = b p ( y / O * l ) *  ( 1 2 )  

3. Spatial distribution of rate of evaporation along the leading slope of a 
ridge surface 

(a)  Theoretical analysis 

The problem of evaporation from a flat saturated liquid surface into a fully turbulent 
boundary layer has been initially treated theoretically by, for example, Sutton (1953)  
and experimentally by Pasquill (1943) and by Davies & Walters (19.52). This theory 
assumed the velocity profile and Reynolds stress to be independent of downstream 
distance. Davies & Bourne (1956) modified this work to allow for variation of thickness 
of the momentum boundary layer with distance in which a vapour boundary layer is 
embedded. In the problem of flow over a ridge, along the surface of which the surface 
vapour concentration is supposed known, or the temperature known in the case of heat 
transfer, this thickness variation is quite marked and the approach of Davies & Bourne 
is essential. 

Following their analysis the diffusion equation is 

where x denotes the mean concentration of vapour and eD the eddy vapour diffusivity, 
x being measured from virtual origin of the boundary layer. Assuming that the 
mechanisms involved in transporting momentum are the same as those transporting 
vapour, we identify eD with E .  The downstream variation in thickness of momentum 
boundary layer is treated by using 9 (stream function) and x instead of y and x. As 
shown by Davies & Bourne, the diffusion equation is then 

The details of a solution for the curved surface then follow that given for the flat- 
plate case but velocity parameters derived from the curved-surface calculations are 
used. The velocity profile ( 1 2 )  was taken to represent u over the limited range of 
evaporating areas tested on the upwind slope of the ridge. The corresponding E dis- 
tribution is obtained by using i-/p = ~ a u / a y ,  with T = r0 = constant, in the region 
from the surface up to 3 mm say (which determines evaporation or heat transfer), 
= pU;, and U, = a[, using x values consistent with equation (13 ) .  Hence in cm s units 

E = ~2(0* l )*g ' -~y l -* /bq .  (15) 

Substitution of equation ( 1 2 ) )  with u = a$/ay,  and integration gives 

b f;7y'+*. 9 = ( O . l ) * ( l  + q )  
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(17) EU = 012q-lb-(l+P)-'(0. l)dl+q)-l(  1 + q)(l+d-'c(2+2q--r)(l+q)-' 3 .  (I+&' 

and substitution into the diffusion equation leads to 

where t = (1 X = 5" with s = (3 + 3q-r) (1 +q)-l, and 

d = ,zq-ls-lb-(l+n)-'(0.1)d1+d-1( 1 + p)(l+P)-l* 

The method of sources described in detail by Davies & Bourne (1956) for a flat 
surface can now be followed exactly except for the different numerical values of the 
parameters. They showed that, by neglecting the presence of sub-layers as a first 
approximation and extrapolating the velocity profile (12) right down to the actual 
surface, a convenient expression for evaporation from a surface of length 1 could be 
obtained, which was in good agreement with experiments over flat surfaces. Following 
this procedure, we find that evaporation from a length 1 of surface placed with leading 
edge a t  a distance of Z from the leading edge of the ridge is given by 

E = B(2-t)-'(2-t)(t+1)'(2--t)r{(2-t)--l)~-l sinpr(x-xo)p-1[(c+1)8- PI/, (19) 

where B = (2-t)d, ,u = (2-t)-l. 
The method described by Davies & Bourne of partitioning E into contributions 

from the sub-layers and fully turbulent regimes can be followed, but the expressions 
are complex, and a calculation in the ridge conditions suggested that the additional 
computation involved was not necessary. 

( b )  Experimental method and results 

The evaporation experiments were based on the gravimetric method used by 
Pasquill, and Davies & Walters. A flat piece of Perspex was shaped to fit into the 
inset on the floor of the working section. Strips of Whatman No. 1 filter paper were 
placed on this and saturated with aniline (which has convenient vapour diffusion 
properties); these were of width 15 cm and lengths 3,6 and 10 cm and can be regarded 
as simulating a saturated liquid surface, with a constant xo value depending on 
temperature. The techniques of measurement as used in previous work were employed, 
the Perspex slab and filter paper being weighed before and after a suitable period of 
evaporation, an accurate electromagnetic balance being used. The method was 
extended to similar measurements on the up-slope region of a ridge by cutting a piece 
of Perspex to exactly fit the inset on the working-section floor, and shaping the upper 
surface to be identical with the ridge shape used previously. 

Values of U, used were 1540, 1870, 2150 (cm s-l), corresponding to downstream 
distances, x, of the leading edge of Perspex from the virtual origin of the turbulent 
boundary layer of 100, 110 and 120 cm respectively. The evaporation experiments 
on each specific size of evaporating area was repeated several times. The means of 
these, the standard deviation of each group being small, are in good agreement with 
theoretical results, calculated from (19) using flat-surface parameters, and serve as a 
check on experimental procedures. In  table 2 the evaporation experimental results for 
various positions on the ridge are shown together with the associated theoretical 
results, also calculated from (19) using ridge parameters with appropriate numerical 
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1 
A uo 7- 7 

(cm 8-l) 3 6 10 

(a) Experimental results 

1540 0.0 18 0.035 0.052 
1870 0.021 0.043 0.062 
2150 0.024 0.044 0.072 

(a) Theoretical resulta 

1540 0.019 0.0345 0.054 
1870 0.022 0.041 0.063 
2150 0.0245 0.045 0.070 

TABLE 1. Evaporation from flat surfaces in g min-1, 
width = 15 cm and varying values of 1 (cm). 

uo 1 

1540 3 

6 

10 
1870 3 

6 

10 
2150 3 

6 

10 

3 

1 
4 
7 
1 
4 
0 
1 
4 
7 
1 
4 
0 
1 
4 
7 
1 
4 
0 

Experimental 

0.021 
0.02 15 
0.023 
0.038 
0.041 
0.060 
0.023 
0.025 
0.026 
0.045 
0.048 
0.070 
0.024 
0.028 
0.029 
0.049 
0.053 
0.079 

Theoretical 

0.020 
0.022 
0.024 
0.039 
0.042 
0.063 
0.023 
0.025 
0.027 
0,045 
0.048 
0.072 
0.026 
0.029 
0.031 
0.051 
0.058 
0-082 

TABLE 2. Evaporation from area sources on the leading slope of the ridge in g min-I, width 
= 15cm, varying values of I (cm), and distances E (cm) of leading edge of evaporation area 
from origin of ridge. Experimental and theoretical results. 

values; these are seen to be also in good agreement with experimental results. They 
show clearly the sharp variation of evaporation with position on the ridge surface: the 
values for the 3 ern length area source at  the highest part of the ridge are seen to be 
20-25 % higher than those on the lowest part of the slope. 

4. Turbulent diffusion over the leading slope of a ridge from an upstream 
line source 

(a )  Theoretical analysis 
There have been several previous alternative discussions of the problem of turbulent 
flow and diffusion over variable-surface topography, e.g. Hunt & Mulhearn (1973), 
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Taylor (1977). However, as in $3, the method of analysis described by Davies & 
Bourne (1956) was found to be the most convenient to apply to wind-tunnel conditions. 
This is based on solving equation (14) using the velocity profile form (12) with aneddy- 
diffusivity distribution, applying over the main part of the boundary-layer thickness. 
Analysis of the velocity profile, equation (12), over the leading slope shows that q 
varies from 0.19, two centimetres upstream of the ridge, to  0.10 over the brow of the 
ridge, but, in order to solve theresultingequation analytically, it isnecessary to assume 
a constant q value. The resultant velocity distribution, with q = 0.15, is found to com- 
pare well with the experimental velocity profiles over the leading slope of the ridge. 
However, the associated eddy-diffusivity distribution based on the assumption of 
constant stress in the region immediately adjacent to the surface is found not to yield 
good agreement between theory and experimental results for the distribution of gas 
concentration over the main thickness of the boundary layer. Applications of mixing 
length did not improve agreement, and it was found necessary to express the eddy 
viscosity in an alternative form. 

First i t  was noted from experimental flat-plate velocity profiles, over the limited 
range of downstream distance considered, that the velocity at the height of 0.1 cm is 
seen to be approximately 0-6 times the mainstream velocity, and we then assume that 
uol/Uo = 0.6, where Uo is the mainstream velocity and uo.l the velocity at a height of 
0.1 cm above the ridge surface over the small range of downstream distance considered, 
replacing an actual very slow variation of U ~ . ~ / U ,  with x over the ridge. 

Secondly, it was noted from Davies & Bourne (1956) that an expression for eddy 
diffusivity, based on experimental results in the flat-plate case, could be written in 
the form 

E = KU0xPh(S), (20) 

where x is the downstream distance from the virtual origin of the turbulent boundary 
layer, Uo is the mainstream (flat-plate) velocity, K is a constant found from experi- 
ment, and 

h(5) = 0*00065~0.40, (21) 

where & = y / ( k x R ) .  This leads to E = DUO ym, for a specific downstream dustance, where 
m = 0.40, and D = 0 ~ 0 0 0 6 5 K ~ ( ~ - o ~ ~ ~ ~ / k ~ ~ ~ ~ .  At a sufficiently distant position down- 
stream of the start of the turbulent boundary layer, a 10 cm change in upstream or 
downstream distance is found to give rise to a negligible change in D, and it is 
assumed for mathematical convenience that the eddy viscosity depends only on 
vertical distance, over the limited range of x studied; a constant value of D is used 
corresponding to the mid-point of this range. 

However, over the leading slope of the ridge the velocity at a height of 0.1 cm has 
been approximated in 0 2 by uo.l = b e ,  and using a value of 0.15 for q in equation (1  2) 
gives a distribution of velocity profiles, over the leading slope of the ridge, which are 
found to be similar in shape to observed flat-plate velocity profiles. Therefore, it  is 
assumed that the flow at the height of 0.1 cm over the leading slope of the ridge 
behaves as if it is in a turbulent boundary layer over a flat plate with a varying 
mainstream velocity. With Uo = bc/O.6, the associated expression for eddy viscosity, 
(7), becomes 

8 = DbPym/O*6. (22) 
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Using the analysis described in $ 3  with appropriate x values, a solution of equation 
( 1 4 ) )  with expression ( 1 2 )  and (20) substituted for u and E respectively, gives an ex- 
pression for the Concentration downstream of a line source over the leading slope of a 
ridge in a wind tunnel in the form 

where xo is the mean concentration of diffusing matter upstream of the line source. The 
values of the parameters are given by 

x - x 0 -  - A7-(2--?)-' exp { - "(2-7) & 1 ( 2  - ~ ) - 1 } ,  ( 2 3 )  

A = Q[B(2-7)-' ( 2  - ~) (7 -1 ) / (2 - -7 )  r((2 - T)-l}]-', 

m+q 
1 + q '  

T = -  

'I = p - c  = ( E + / 3 ) ~ - ( E 0 + / 9 B ) " ,  

and Q is the rate a t  which matter is being emitted from the line source per unit width: 
E refers to  downstream distance from origin of the ridge, E, and corresponding to  the 
line source position. Equation ( 2 3 )  is then used to determine the concentration profiles 
at specific stations over the leading slope of the ridge. 

( b )  Experimental method and results 

The apparatus described in $ 2 for the momentum transfer case was adapted to  obtain 
the experimental data. A slit 0.02 cm long and 27.5 cm wide was made out of brass and 
inserted into the floor section upstream of the start of the ridge, so that the leading 
edge of the ridge was 1.6 cm downstream. The uniformity of the slit was ensured by 
putting fixing screws across its width and a toolmaker's microscope was used to set 
the narrow gap. A large hollow metal construction was welded under the slit and by 
way of a manifold the cavity formed was connected to a nitrous oxide source. The size 
of the cavity under the slit is important, since i t  is necessary to  ensure that the nitrous 
oxide escaped uniformly across the width of the slit. Before any concentration profiles 
are measured, experiments are performed to  ascertain whether the gas emitted from 
the slit makes any measurable difference to the existing turbulent boundary layer. 
For the rates of flow of gas a t  which the experiments are to be performed, the apparatus 
used for measuring pressure differences in the boundary layer failed to detect any 
difference, for both the flat-plate and ridge cases. 

The Pitot tube was placed in position, as in the momentum transfer experiments, 
and then connected to a gas analyser and electric pump. Hence mixtures of air and 
nitrous oxide are drawn into the gas analyser via the mouth of the Pitot tube. The 
concentration thus obtained is taken as the average over the mouth of the Pitot tube. 
A Grubb-Parsons gas analyser is used; for further details of experimental methods 
see R. A. Dawkins (1979). 

Firstly a flat plate is placed in the downstream position of the ridge and measure- 
ments made at various downstream stations; calculations based on the analysis by 
Davies & Bourne (1956) are then compared with the experimental data. It can be 
seen from figure 7 that the theory agrees extremely well with the experiments. The 
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FIGURE 7. Vertical distribution of concentration at various downstream distances over a flat surface 
from a line source. Q = 0.0052 g s-l cm-', uo = 2150 cm/s. (a )  6 cm from line source; (a) 10 cm 
from line source; (c) 14 cm from line source. A, experiment ; . - , calculated values (from 
Davies & Bourne's method). 
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ridge is then put in place, as in the momentum transfer experiments, and concentra- 
tion readings are taken a t  downstream positions on the ridge, using mainstream 
velocities of 1540 cm s-l, 1870 cm s-l and 2150 cm s-l. The results measured a t  the 
flow speed of 2150 cm s-l are shown in figure 8; these were obtained over the leading 
and back slopes of the ridge: the sampling positions shown in figure 2 are used and 
the line source is placed 1-6 cm upstream of the commencement of the ridge. 

5. Conclusions 
An open-circuit wind tunnel was used to measure the distribution of mean velocity 

profile over the mid-section of a ridge of small slope, placed on the floor of the working 
section of the tunnel, three tunnel speeds being used. These were compared with 
theoretical calculations, based on the following premises. 

(i) The pressure gradient generated by the ridge near its surface can be deduced 
from classical inviscid flow over a circular cylinder, radiusa; this is consistent with the 
rigorous analysis developed by Sykes (1980). 

(ii) Terms of higher order than (aUo/q9)z (a parameter which measures the curvature 
of the ridge surface for a given flow system) can be neglected. 

(iii) Second-order terms of velocity perturbation can be neglected in the equations 
of mean motion. 

Apart from a region close to  the surface on the down-slope side of the ridge, agree- 
ment between theory and experiment was seen to be extremely good. 

Measurements were also made of rates of evaporation from varying lengths of 
Whatman No. 1 filter paper placed on the up-slope side of the ridge, the gravimetric 
method being employed. These showed a 20-25 % increase of evaporation rate from 
the lowest to the highest part of the ridge. A previous theoretical formulation by 
Davies & Bourne ( 1  956) was modified to apply to the curved mrface studied, and was 
seen to be in good agreement with experiment. This can be extended to predict mass 
transfer from curved surfaces of small slopes, for any prescribed spatial distribution of 
surface concentration of the quantity being transferred: it can also be applied to 
calculate heat transfer from similar curved surfaces for prescribed surface temperature 
distributions. 

This method of analysis is also used to predict concentration profiles downstream of 
a line source placed in a turbulent boundary layer over a flat plate in a wind tunnel. 
It is found that theory and experiment match each other extremely well, as borne out 
by figure 7. Theeddy-viscosity form used by Davies & Bourne (1956) in their flat-plate 
analysis is then adapted to approximate to the eddy-viscosity distribution over the 
limited range of downstream distance covered by the leading slope of the ridge, the 
velocity form used being identical with that used in the mass transfer case. The 
resulting solution works well over most of the leading slope of the ridge. The important 
point to note in figure 8 is that it predicts accurately the decrease in concentration 
caused by additional turbulent momentum drawn in from above the surface and the 
downstream ‘stretching ’ by higher velocities over the ridge. These results illustrate the 
significant effect of surface curvature on diffusion. It is suggested that these processes 
enhance the diffusing properties, and hence the concentration is decreased as the wind 
speed increases. On the back slope of the ridge the flow is retarded close to the surface, 
leading to an increase in the concentration in this region: however, further away from 
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the surface the flow returns to its previous increase in velocity and the concentration 
decreases again compared to that in flat-plate flow. 

The assumption that the parameter q used in the velocity profiles is constant over 
a limited range of downstream distance gives rise to reasonable approximations to 
these profiles over the leading slope of the ridge. However, over the brow of the ridge 
the approximation has its largest discrepancy; theory and experiment do not agree as 
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well as at lower positions. The choice of eddy-viscosity distribution proved to be very 
important; other possible forms of approximation were tried, based on, for example, 
mixing-length; but they did not lead to results that agreed very well with experiment. 
However, the eddy-viscosity form derived from Davies & Bourne’s flat-plate method 
of calculation, and appliedin the region away from the surface, leads to good agreement 
between theory and measurement. 

These results indicate the sharp effect on mean velocity distribution (and associated 
surface mass transfer) of curvature due to the additional velocities generated by the 
induced pressure gradients. This effect could well be of considerable importance in 
engineering, meteorological and agricultural contexts. 

The theoretical analysis is capable of extension to axially symmetric boundary 
surfaces, such as flow along a long circular cylinder or radially out along a rotating disk, 
followed by flow over radially symmetrical small-sloped protuberances on these 
surfaces. By using suitable forms of mapping in the initial pressure gradient calculation, 
it can also be applied to other forms of topography. 
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